Kinetic Modelling of a Pyrolysis – Gasification Reactor

نویسندگان

  • Petar S Varbanov
  • Rongxin Su
  • Hon Loong Lam
  • Xia Liu
  • Jiří J Klemeš
  • Attila Egedy
  • Jun Zou
  • Norbert Miskolczi
  • Haiping Yang
  • Paul T. Williams
چکیده

Biomass is of growing interest as a secondary energy source. Biomass could be converted to energy especially by pyrolysis or gasification. Understanding the mechanism and the kinetics of biomass pyrolysis and gasification could be the key to the design of industrial devices capable of processing vast amounts of biomass feedstock. There are multiple reactions describing the decomposition of biomass to gaseous products and it is difficult to identify each of the reactions. Therefore reactions must be simplified; in general well identified reagents and products with different states (feedstock, tar, gas) are used for calculations, instead of using different compounds of real products. In our work real product compounds obtained from pyrolysis were used, and the kinetic constants for biomass pyrolysis and gasification were identified. A laboratory scale reactor was used for the physical experiments containing consecutive fast pyrolysis and gasification stages. The main aim of this research was to create a detailed and validated first principle model for the reactor system. In this study, a compartment modelling approach was used, where all compartments facilitate different reactions (pyrolysis, thermal, and catalytic gasification). With the identification of the model parameters (using PSO algorithm) a stable and validated model was created, which can be used for further optimisation studies. MATLAB was used for the creation of the compartment model, and Particle Swarm Optimisation was used for the kinetic parameter identification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Differential Evolution (LDE) for Optimization of Kinetic Parameters in Pyrolysis of Biomass

Pyrolysis is the thermal decomposition of organic matter under inert atmospheric conditions, leading to the release of volatiles and formation of char. It is also a first step in the biomass gasification. Understanding of kinetic parameters is essential for the design of a suitable pyrolysis reactor. In the proposed kinetic model of this study, the kinetic scheme of biomass decomposition by two...

متن کامل

Mathematical Model of Biomass Product Using Gasification Reactor

The aim of this study is to design a new mathematical model biomass product with the help of the gasification reactor. This design will help in describing most of the internal parameters inside this process. This research also aims to study and analyze the kinetic reaction, mass and heat transfer for four zones of the gasification reactor. It has been found that the char concentration from ...

متن کامل

Modelling of Gasification of Refuse-derived fuel (RDF) based on laboratory experiments

In this work, a model of gasification process that enables all, material and energy balance, calculation of gas composition, gas heating value and reactor temperature is presented. The model parameters were estimated by laboratory experiments. A fraction of MSW generally separated from inorganic materials and biodegradable components, so called Refuse-derived fuel (RDF), was studied by material...

متن کامل

Indirectly Heated Fluidized Bed Biomass Gasification Using a Latent Heat Ballast

The objective of this study is to improve the heating value of gas produced during gasification of biomass fuels using an indirectly heated gasifier based on latent heat ballasting. The latent heat ballast consists of lithium fluoride salt encased in tubes suspended in the reactor. The lithium fluoride has a melting point that is near the desired gasification temperature. With the ballast a sin...

متن کامل

Process simulation and sensitivity analysis of waste plastics gasification in a fluidized bed reactor

This paper presents a simplified process simulation model of typical waste polyethylene gasification in a fluidized bed reactor using Aspen Plus. The proposed model incorporates both physical and chemical processes, including drying, pyrolysis, combustion and gasification, by using various inbuilt modules to predict the resulting product gas composition and temperature. A detailed sensitivity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017